Peripheral site acetylcholinesterase blockade induces RACK1-associated neuronal remodeling.
نویسندگان
چکیده
BACKGROUND Peripheral anionic site (PAS) blockade of acetylcholinesterase (AChE) notably affects neuronal activity and cyto-architecture, however, the mechanism(s) involved are incompletely understood. OBJECTIVE We wished to specify the PAS extracellular effects on specific AChE mRNA splice variants, delineate the consequent cellular remodeling events, and explore the inhibitory effects on interchanging RACK1 interactions. METHODS We exposed rat hippocampal cultured neurons to BW284C51, the peripheral anionic site inhibitor of AChE, and to the non-selective AChE active site inhibitor, physostigmine for studying the neuronal remodeling of AChE mRNA expression and trafficking. RESULTS BW284C51 induced overexpression of both AChE splice variants, yet promoted neuritic translocation of the normally rare AChE-R, and retraction of AChE-S mRNA in an antisense-suppressible manner. BW284C51 further caused modest decreases in the expression of the scaffold protein RACK1 (receptor for activated protein kinase betaII), followed by drastic neurite retraction of both RACK1 and the AChE homologue neuroligin1, but not the tubulin-associated MAP2 protein. Accompanying BW284C51 effects involved decreases in the Fyn kinase and membrane insertion of the glutamate receptor NR2B variant and impaired glutamatergic activities of treated cells. Intriguingly, molecular modeling suggested that direct, non-catalytic competition with Fyn binding by the RACK1-interacting AChE-R variant may be involved. CONCLUSIONS Our findings highlight complex neuronal AChE-R/RACK1 interactions and are compatible with the hypothesis that peripheral site AChE inhibitors induce RACK1-mediated neuronal remodeling, promoting suppressed glutamatergic neurotransmission.
منابع مشابه
Interaction of "readthrough" acetylcholinesterase with RACK1 and PKCbeta II correlates with intensified fear-induced conflict behavior.
Behavioral reactions to stress are altered in numerous psychiatric and neurodegenerative syndromes, but the corresponding molecular processes and signal transduction pathways are yet unknown. Here, we report that, in mice, the stress-induced splice variant of acetylcholinesterase, AChE-R, interacts intraneuronally with the scaffold protein RACK1 and through it, with its target, protein kinase C...
متن کاملEthanol induces gene expression via nuclear compartmentalization of receptor for activated C kinase 1.
Scaffolding proteins such as receptor for activated C kinase (RACK) 1 are involved in the targeting of signaling proteins and play an important role in the regulation of signal transduction cascades. Recently, we found that in cultured cells and in vivo, acute ethanol exposure induces the nuclear compartmentalization of RACK1. To elucidate a physiological role for nuclear RACK1, the Tat protein...
متن کاملA non-cholinergic, trophic action of acetylcholinesterase on hippocampal neurones in vitro: molecular mechanisms.
In this study neurite outgrowth from cultured hippocampal neurones was increased by addition of acetylcholinesterase acting in a non-cholinergic manner. Only monomeric acetylcholinesterase, a form of acetylcholinesterase dominant in development, increased neurite outgrowth (3-10 U/ml); moreover this effect was not blocked by active site blockers (echothiophate and galanthamine) but was sensitiv...
متن کاملEosinophil-mediated cholinergic nerve remodeling.
Eosinophils are observed to localize to cholinergic nerves in a variety of inflammatory conditions such as asthma, rhinitis, eosinophilic gastroenteritis, and inflammatory bowel disease, where they are also responsible for the induction of cell signaling. We hypothesized that a consequence of eosinophil localization to cholinergic nerves would involve a neural remodeling process. Eosinophil co-...
متن کاملCannabinoid-induced actomyosin contractility shapes neuronal morphology and growth
Endocannabinoids are recently recognized regulators of brain development, but molecular effectors downstream of type-1 cannabinoid receptor (CB1R)-activation remain incompletely understood. We report atypical coupling of neuronal CB1Rs, after activation by endo- or exocannabinoids such as the marijuana component ∆(9)-tetrahydrocannabinol, to heterotrimeric G12/G13 proteins that triggers rapid a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-degenerative diseases
دوره 4 2-3 شماره
صفحات -
تاریخ انتشار 2007